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ABSTRACT Early stochastic studies focused on steady-state, grav-
ity-dominated unsaturated flow in unbounded domainsIn this study, on the basis of the van Genuchten–Mualem constitu-
(e.g., Yeh et al., 1985a,b; Russo, 1993, 1995a,b; Yang ettive relationship, we develop a general nonstationary stochastic model

for transient, variably saturated flow in randomly heterogeneous me- al., 1996; Zhang et al., 1998; Harter and Zhang, 1999).
dia with the method of moment equations. We first derive partial Under these conditions, the unsaturated flow field is
differential equations governing the statistical moments of the flow stationary, and hence analytical or semianalytical solu-
quantities by perturbation expansions and then implement these equa- tions are possible. Recently, some researchers investi-
tions under general conditions with the method of finite differences. gated the effects of boundary conditions on steady-state
The nonstationary stochastic model developed is applicable to the flow and the consequent effects of flow nonstationarity
entire domain of bounded, multidimensional vadose zones or inte-

in one-dimensional semibounded domains (Anderssongrated unsaturated–saturated systems in the presence of random or
and Shapiro, 1983; Indelman et al., 1993) or two-dimen-deterministic recharge and sink–source and in the presence of
sional bounded domains (Zhang and Winter, 1998). Itmultiscale, nonstationary medium features. We demonstrate the
has been found that the simpler, gravity-dominated flowmodel with some two-dimensional examples of unsaturated and inte-

grated unsaturated–saturated flows. The validity of the developed models may provide good approximations for flow in
stochastic model is confirmed through high-resolution Monte Carlo vadose zones of large thickness and/or coarse-textured
simulations. We also investigate the relative contributions of the soil soils, although they may not be valid for vadose zones
variabilities (KS, �, and n ) as well as the variability in recharge Q to of fine-textured soils with a shallow water table. More
the pressure head variance. It is found that the pressure head variance recently, a number of studies looked at transient unsatu-
is sensitive to these variabilities, in the order of n, �, KS, and Q. rated flows (Protopapas and Bras, 1990; Unlu et al.,
Though the variability of � and n is usually smaller than that of

1990; Mantoglou, 1992; Liedl, 1994; Zhang, 1999; Fous-KS and Q, their effect on the pressure head variance should not
sereau et al., 2000) and transient unsaturated–saturatedbe ignored.
flow (Li and Yeh, 1998; Ferrante and Yeh, 1999; Zhang
and Lu, 2002).

To describe unsaturated flow, the constitutive rela-Although geologic formations exhibit a high de-
tionships of unsaturated hydraulic conductivity K vs.gree of spatial variability, medium properties, in-
pressure head � and effective water content �e vs. �cluding fundamental parameters such as permeability
must be specified. Three models are commonly used toand porosity, are usually observed only at a few loca-
describe these functional relationships: the van Genuch-tions because of the high cost associated with subsurface
ten–Mualem model (van Genuchten, 1980), the Brooks–measurements. This combination of significant spatial
Corey model (Brooks and Corey, 1964), and the Gard-heterogeneity with a relatively small number of observa-
ner–Russo model (Gardner, 1958; Russo, 1988). Mosttions leads to uncertainty about the values of medium
existing stochastic analyses utilize the Gardner–Russoproperties and, thus, to uncertainty in predicting flow
model because of its simplicity (e.g., Yeh et al., 1985a,b;and solute transport in such media. It has been recog-
Yeh, 1989; Russo, 1993, 1995a,b; Yang et al., 1996;nized that the theory of stochastic processes provides a
Harter and Yeh, 1996a,b; Zhang, 1999; Tartakovsky etnatural method for evaluating flow and transport uncer-
al., 1999; Lu et al., 2000; Zhang and Lu, 2002). On thetainties. Many stochastic theories have been developed
other hand, the more complex van Genuchten–Mualemto study the effects of spatial variability on flow and
and Brooks–Corey models usually fit measured K(�)transport in saturated zones (e.g., Dagan, 1989; Gelhar,
and �(�) data better. Zhang et al. (1998) investigated1993; Zhang, 2002) and in unsaturated zones (e.g., Da-
the impact of different constitutive models on the resultsgan and Bresler, 1979; Bresler and Dagan, 1981; Anders-
of stochastic analyses of steady-state, gravity-dominatedson and Shapiro, 1983; Yeh et al., 1985a,b; Hopmans et
flow. It was found that the impacts of the constitutiveal., 1988; Destouni and Cvetkovic, 1989; Polmann et al.,
models on the statistical moments of pressure head,1991; Mantoglou, 1992; Indelman et al., 1993; Liedl,
effective water content, unsaturated hydraulic conduc-1994; Russo, 1993, 1995a,b; Harter and Yeh, 1996a,b;
tivity, and velocity depend on saturation ranges. ForZhang and Winter, 1998; Zhang et al., 1998; Zhang,
example, the mean head and the mean effective water1999; Tartakovsky et al., 1999; Foussereau et al., 2000;
content for the Brooks–Corey model differ greatly fromLu et al., 2000, 2002). In the unsaturated zones, the
their counterparts for the Gardner–Russo model nearnonlinearity of flow further complicates the problem.
the dry and wet limits, while the differences are small
at the intermediate range of saturation. Owing to itsZhiming Lu and Dongxiao Zhang, Hydrology, Geochemistry, and
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model is seldom used in stochastic modeling of unsatu- n(x) � (n1,..., nd )T is an outward unit vector normal to
the boundary, H(�) is the Heaviside step function, beingrated flow in heterogeneous media, although it is the

most commonly used model for deterministic numerical zero when � � 0 and one when � � 0, Ss is the specific
storage, C[�;·]� d�e/d� is the specific moisture capacity,modeling. On the basis of the van Genuchten–Mualem

model, Hughson and Yeh (2000) have recently devel- and K[�;·] is the unsaturated hydraulic conductivity (as-
sumed to be isotropic locally). Both C and K are func-oped a geostatistical inverse approach to flow in variably

saturated media, in which the flow covariances are de- tions of pressure head and soil properties at x. For con-
venience, they will be written as C(x,t) and K(x,t) in therived with a space-state approach.

In this study, we develop a stochastic model for tran- sequel. The elevation x1 is directed vertically upward. In
these coordinates, recharge has a negative sign. Thesient flow in heterogeneous unsaturated–saturated me-

dia on the basis of the van Genuchten–Mualem constitu- seepage velocity at x is related to the specific flux qi by
tive model. It is an extension of the recent work of
Zhang and Lu (2002) for coupled unsaturated–saturated ui(x,t) �

qi(x,t)
�e(x,t)

[6]
flow, in which the Gardner–Russo model is used. We
first derive partial differential equations governing the where �ε � �e[�(x,t);·] is the effective volumetric water
statistical moments of the flow quantities by perturba- content at x, which depends on � and soil properties
tion expansions and then implement these equations when � � 0 and becomes the saturated water content
under general conditions with the method of finite dif- �s when � � 0. Equations [1] through [5] become the
ferences. This approach is different from the space-state governing equations for transient unsaturated flow if
approach of Hughson and Yeh (2000): the former first � � 0 and those for transient saturated flow if � � 0.
derives the moment equations and then solves them It is clear that some model is needed to describe the
numerically; the latter expresses the statistical moments constitutive relationships of K vs. � and �e vs. � when
on the basis of the spatial and temporal discretizations the flow is unsaturated. No universal models are avail-
of a particular numerical scheme. Therefore, unlike the able for the constitutive relationships. Instead, several
space-state approach, the moment equations derived in empirical models are usually used, including the Gard-
our approach are independent of the specific numerical ner–Russo model (Gardner, 1958; Russo, 1988), the
scheme to be used and can be solved on numerical grids Brooks–Corey model (Brooks and Corey, 1964), and
to be determined a posteriori based on the characteris- the van Genuchten–Mualem model (van Genuchten,
tics of the moment functions, as well as the particular 1980). Most analytical solutions of the deterministic un-
configuration of a flow problem under consideration. saturated flow equations and most previous stochastic
The stochastic model developed in this study is applica- analyses used the Gardner–Russo model because of its
ble to the entire domain of a bounded, multidimensional simplicity. However, it is generally accepted that the
unsaturated–saturated system in the presence of ran- more complex van Genuchten–Mualem and Brooks–
dom or deterministic recharge and sink–source, as well Corey models may perform better than the simple Gard-
as in the presence of multiscale, nonstationary me- ner–Russo model in describing measured data of K(�)
dium features. and �e(�). In this study, we use the van Genuchten–

Mualem model:
STOCHASTIC DIFFERENTIAL

K(x,t) � Ks(x)√S(x,t){1 � [1 � S1/m(x,t)]m}2 [7]EQUATIONS
We consider transient flow in variably saturated po- S(x,t) � {1 � [��(x)�(x,t)]n}�m [8]

rous media satisfying the following continuity equation
where � 	 0. For � � 0, S � 1 and K � KS(x). In theand Darcy’s Law:
above, S(x,t) � �e/(�s � �r ) is the effective saturation,
�r is the residual (irreducible) water content, �s is the{SSH(�) � H(��)C [�;·]}

��(x,t)
�t

� 
·q(x,t) � g(x,t) [1]
saturated water content, � and n are fitting parameters,
and m � 1 � 1/n. With Eq. [8], C(x,t) � d�e/d� can be
expressed explicitly as

qi(x,t) � �K[�;·]
�

�xi

[�(x,t) � x1], [2]
C(x,t) � �(x)[n(x) � 1](�s � �r)S1/m(x,t)[1 � S1/m(x,t)]m

[9]subject to initial and boundary conditions
It is seen that when S � 1, C � 0.

In this study, �S and �r are assumed to be deterministic
as their variabilities are likely to be small compared

�(x, 0) � �0(x), x�� [3]

�(x,t) � �(x,t), x�
D [4]

q(x,t)·n(x) � Q(x,t), x�
N [5] with that of the effective water content �e (Russo and
Bouton, 1992). The soil parameters n(x), the log-trans-
formed pore-size distribution parameter �(x) � ln�(x),where q is the specific discharge (flux), �(x,t) � x1 is

the total head, � is the pressure head, i � 1,..., d (where and the log-transformed saturated hydraulic conductiv-
ity f(x) � lnKs(x) are treated as random space functions.d is the number of space dimensions), �0(x) is the initial

pressure head in the domain �, �(x,t) is the prescribed Although the distributional forms of the soil parameters
need not be specified for the subsequent derivations ofhead on Dirichlet boundary segments 
D, Q(x,t) is the

prescribed flux across Neumann boundary segments 
N, moment equations, they must be specified in the Monte
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Carlo simulations designed to verify the derived mo- �2�(x,t)
�x2

i

�
�Y(x,t)

�xi
���(x,t)

�xi

� �i1�ment equations. Here the fitting parameter n(x) is as-
sumed to follow a normal distribution while the satu-
rated hydraulic conductivity KS(x) and the pore size � Cs(x,t)exp[�Y(x,t)]

��(x,t)
�t

� g(x,t)exp[�Y(x,t)]
distribution �(x) to follow lognormal distributions. The

[12]particular distributional assumptions made are consis-
tent with the finding of Russo and Bouton (1992) based
on field data. We also allow spatial variability and/or
randomness in the initial and boundary terms �0(x),
�(x,t), and Q(x,t), and in the source–sink term g(x,t).

�(x,0) � �0(x), x�� [13]

�(x,t) � �(x,t), x�
D [14]

ni(x)exp[Y(x,t)]���(x,t)
�xi

� �i1�� �Q(x,t), x�
N [15]In turn, the governing Eq. [1] through [5] become a set of
stochastic partial differential equations whose solutions
are no longer deterministic values but are probability where �i1 is the Kronecker delta function. Summation
distributions or related quantities such as statistical mo- for repeated indices is implied. Because the variability
ments of the dependent variables. of �(x,t) depends on the input variabilities, that is, those

In this study, the soil properties (i.e., f, �, and n), the of the soil properties ( f, �, and n) and those of the
initial and boundary conditions (i.e., �0, �, and Q), and initial and boundary and source–sink terms, and the vari-
the source–sink terms (i.e., g) are generally treated as abilities of Y and CS depend on those of � and the input
(spatially and/or temporally) nonstationary random variables, one may express these quantities as infinite
space functions (random fields). Thus, the expected val- series in the following form: �(x,t) � �(0) � �(1) � �(2) �
ues may be space-time dependent and the covariances ..., Y(x,t) � Y(0) � Y(1) � Y(2) � ..., and CS(x,t) � C(0)

S �
may depend on the actual points in space-time rather C(1)

S � C(2)
S �.... In these series, the order of each term

than only on their space-time lags. As discussed in is with respect to �, which, to be clear later, is some
Zhang (2002), multiscale medium features such as dis- combination of the variabilities of the input variables.
tinct soil layers, zones, and facies may cause the soil After substituting these and the following formal de-
properties f(x), �(x), and n(x) to be spatially nonsta- compositions into Eq. [12] through [15]: g(x,t) �
tionary; seasonal variations may render the net recharge �g(x,t)� � g�(x,t), �0(x) � ��0(x)� � ��0(x), �(x,t) �
rate Q(x,t) temporally nonstationary; and additional ��(x,t)� � ��(x,t), and Q(x,t) � �Q(x,t)� � Q�(x,t), and
variations in vegetation coverage may lead to spatial collecting terms at separate order, we obtain
and temporal nonstationarities in Q(x,t) (due to evapo-
transpiration among other factors). Also, a stationary �2�(0)(x,t)

�x2
i

�
�Y(0)(x,t)

�xi
���(0)(x,t)

�xi

� �i1�random field may become nonstationary after condi-
tioning on measurements.

In the next section, we derive equations governing �
C(0)

S (x,t)
Km(x,t)

��(0)(x,t)
�t

�
�g(x,t)�
Km(x,t)

[16]
the first two moments (means and covariances) of the
flow quantities in an unsaturated–saturated system. For
simplicity, we assume the various random functions
g(x,t), �0(x), �(x,t), and Q(x,t) to be mutually indepen-
dent and to be uncorrelated with the soil properties

�(0)(x,0) � ��0(x)�, x � � [17]

�(0)(x,t) � ��(x,t)�, x � 
D [18]

ni(x)���(0)(x,t)
�xi

� �i1� � �
�Q(x,t)�
Km(x,t)

, x � 
N [19]f(x), �(x), and n(x). The correlations between the soil
properties are retained in the general moment equations
derived. The moment equation procedure given below
can be easily extended to incorporate other correlations �2�(1)(x,t)

�x2
i

� Ji(x,t)
�Y(1)(x,t)

�xi

�
�Y(0)(x,t)

�xi

��(1)(x,t)
�xibetween the various random variables.

�
C (0)

S (x,t)
Km(x,t) ���(1)(x,t)

�t
� Jt(x,t)Y(1)(x,t)�MOMENT DIFFERENTIAL EQUATIONS

As is commonly done, we work with the log-trans-
�

C (1)
S (x,t)

Km(x,t)
Jt(x,t) �

1
Km(x,t)

[�g(x,t)�Y (1)(x,t) � g�(x,t)]formed unsaturated hydraulic conductivity Y(x,t) � ln
K(x,t), which is f(x) � 1/2lnS(x,t) � 2ln{1 � [1 � S1/m [20]
(x,t)]m} for � � 0 and f(x) for � � 0. Because S(x,t) �
1 for � � 0, Y(x,t) may be written in a general form as

Y(x,t) � f(x) � 1/2 lnS(x,t) � 2ln{1 � [1 � S1/m(x,t)]m}

�(1)(x,0) � ��0(x), x � � [21]

�(1)(x,t) � ��(x,t), x � 
D [22]

ni(x)���(1)(x,t)
�xi

� Ji(x,t)Y(1)(x,t)� � �
Q�(x,t)
Km(x,t)

, x � 
N [23][10]

Let CS(x,t) � SSH[�(x,t)] � H[��(x,t)]C(x,t). As C �
0 for � � 0, we have where Km(x,t) � exp[Y(0)(x,t)], and Ji(x,t) � ��(0)(x,t)/

�xi � �i1 and Jt(x,t) � ��(0)(x,t)/�t are the respectiveCS(x,t) � SSH[�(x,t)] � C(x,t) [11]
spatial and temporal mean gradient of (total) head. It
can be shown that ��(0)� � �(0), and ��(1)� � 0. Hence,Substituting Eq. [2] into [1] and utilizing Y(x,t) �

lnK(x,t) yields the mean pressure head is ��� � �(0) to zeroth or first
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order in �. The head fluctuation is �� � �(1) to first �2�(1)(x,t)
�x2

i

� bi(x,t)
��(1)(x,t)

�xi

� c(x,t)�(1)(x,t)order. Therefore, the head covariance is C� (x,t;�,�) �
��(1)(x,t)�(1)(�,�)� to first order in �2 (or second order
in �). � e(x,t)

��(1)(x,t)
�t

�
1

Km(x,t)
g�(x,t)

On the basis of Eq. [10] and [11], it is shown (Appen-
dix A) that

� Ji(x,t)
�f �(x)

�xi

� Ji(x,t)h010(x,t)
���(x)

�xi
Y (0)(x,t)

� �f(x)� � 1/2 lnS0 � 2 ln{1 �[1 � S1/m00 ]m0} [24]
� Ji(x,t)h001(x,t)

�n�(x)
�xi

Y (1)(x,t) � f �(x) � h100(x,t)�(1)(x,t) � h010(x,t)��(x)
� d1(x,t)f �(x) � d2(x,t)��(x) � d3(x,t)n�(x) [33]

� h001(x,t)n�(x) [25]

C (0)
S (x,t) � SSH[�(0)] � exp��(x)�[�n(x)�

�(1)(x,0) � ��0(x), x � � [34]

�(1)(x,t) � ��(x,t) x � 
D [35]
� 1](�S � �r)S 1/m00 [1 � S 1/m00 ]m0 [26]

ni(x)
��(1)(x,t)

�xi

� d0(x,t)�(1)(x,t) � d4(x,t)f �(x)C (1)
S (x,t) � S(0)�[�(0)]�(1)(x,t) � p100(x,t)�(1)(x,t)

� p010(x,t)��(x) � p001(x,t)n�(x) [27]
� d4(x,t)h010(x,t)��(x)

where S0 � S(0)(x,t), hijk � �i�j�kY(x,t)/��i��j�nk and pijk �
�i�j�kC(x,t)/��i��j�nk, evaluated at ��(x)�, �n(x)� and � d4(x,t)h001(x,t)n�(x) �

Q�(x,t)
Km(x,t)

, x � 
N [36]
��0(x,t)�, and their explicit expressions are given in Ap-
pendix A. Substituting Eq. [24] and [26] into [16] through where
[19] yields

bi(x,t) � Ji(x,t)h100(x,t) � �Y (0)(x,t)/�xi�2�(0)(x,t)
�x2

i

� ai(x,t)
��(0)(x,t)

�xi
c(x,t) � �h100(x,t)d1(x,t) � [SS�(�(0)) � p100(x,t)]

Jt(x,t)
Km(x,t)

� Ji(x,t)
�h100(x,t)

�xi
� e(x,t)

��(0)(x,t)
�t

�
�g(x,t)�
Km(x,t)

� d(x,t) [28]

d0(x,t) � ni(x)Ji(x,t)h100(x,t)

d1(x,t) � (�g(x,t)� � C (0)
S (x,t)Jt(x,t))/Km(x,t)

d2(x,t) � h010(x,t)d1(x,t) � Ji(x,t)�h010(x,t)/�xi

�(0)(x,0) � ��0(x)�, x � � [29]

�(0)(x,t) � ��(x,t)�, x � 
D [30]

ni(x)
��(0)(x,t)

�xi

� �
�Q(x,t)�
Km(x,t)

� �i1ni(x), x � 
N [31] � Jt(x,t)p010(x,t)/Km(x,t)

d3(x,t) � h001(x,t)d1(x,t) � Ji(x,t)�h001(x,t)/�xiwhere
� Jt(x,t)p001(x,t)/Km(x,t)

Km(x,t) � exp[�f(x)�]√S0 [1 � (1 � S 1/m00 )m0]2

d4(x,t) � �ni(x)Ji(x,t) [37]
ai(x,t) �

�Y (0)

�S0
��S0

�xi
� � Y (0)�

�n�
��n(x)�

�xi
Multiplying Eq. [33] through [36] by �(1)(�,�) and taking
the ensemble mean yields equations for the covariance
function of pressure headd(x,t) � �Ji(x,t)

��f(x)�
�xi

� �i1ai(x,t)

�2C�(x,t;�,�)
�x2

i

� bi(x,t)
�C�(x,t;�,�)

�xi

� c(x,t)C�(x,t;�,�)e(x,t) � C (0)
S (x,t)/Km(x,t)

�S0

�xi

�
�S0

��(0)

��(0)(x,t)
�xi

�
�S0

����
���(x)�

�xi

�
�S0

��n�
��n(x)�

�xi � e(x,t)
�C�(x,t;�,�)

�t
�

1
Km(x,t)

Cg�(x,t;�,�)
[32]

Here Y(0)��n� is the partial derivative of Y(0) with respect � Ji(x,t)
�Cf�(x;�,�)

�xi

� Ji(x,t)h010(x,t)
�C��(x;�,�)

�xito �n� without considering S0 as an implicit function of
�n�. It in fact equals to the second term in the right side

� Ji(x,t)h001(x,t)
�Cn�(x;�,�)

�xi

� d1(x,t)Cf�(x;�,�)of Eq. [A4], evaluated at ���, �n�, and ���0.
It is clear that Eq. [28] is nonlinear in the unsaturated

� d2(x,t)C��(x;�,�) � d3(x,t)Cn�(x;�,�)regime (i.e., �(0) � 0) and becomes linear in the saturated [38]
regime (i.e., �(0) � 0). This transition is expressed mathe-
matically with the Heaviside step function.

Substituting Eq. [25] and [27] into [20] through [23] C�(x,0;�,�) � C�0�(x;�,�), x � � [39]

C�(x,t;�,�) � C��(x,t;�,�), x � 
D [40]yields
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ni(x)
�C�(x,t;�,�)

�xi

� d0(x,t)C�(x,t;�,�)
� Ji(�,�)h010(�,�)

�Cn�(x;�)
��i

� Ji(�,�)h001(�,�)
�Cn(x;�)

��i

� d1(�,�)Cnf(x;�) � d2(�,�)Cn�(x;�) � d3(�,�)Cn(x;�)� �
1

Km(x,t)
CQ�(x,t;�,�) � d4(x,t)Cf�(x;�,�)

[50]
� d4(x,t)h010(x,t)C��(x;�,�) � d4(x,t)h001(x,t)Cn�(x;�,�) Cn�(x;�,0) � Cn�0

(x;�), � � � [51]

Cn�(x;�,�) � Cn�(x;�,�), � � 
D [52]x � �N [41]

where Cf�, C��, Cn�, Cg�, C�0�, C��, and CQ� can be
formulated by multiplying f �(x), ��(x), n�(x), g�(x,t),

ni(�)
�Cn�(x;�,�)

��i

� d0(�,�)Cn�(x;�,�) � d4(�,�)Cnf(x;�)��0(x), ��(x,t), and Q�(x,t) to Eq. [33] through [36],
respectively, taking the ensemble mean, and recalling

� d4 (�,�)h010(�,�)Cn�(x;�)the assumption that f, �, and n are independent of g,
�0, �, and Q � d4(�,�)h001(�,�)Cn(x;�), � � 
N [53]
�2Cf�(x;�,�)

��i

� bi(�,�)
�Cf�(x;�,�)

��i

� c(�,�)Cf� (x;�,�) �2Cg�(x;�,�)
��2

i

� bi(�,t)
�Cg�(x;�,�)

��i

� c(�,t)Cg�(x;�,�)

� exp(�,�)
�Cf�(x;�,�)

��
� Ji(�,�)

�Cf(x;�)
��i � e(�,�)

�Cg�(x;�,�)
��

�
1

Km(�,�)
Cg(x,t;�,�) [54]

� Ji(�,�)h010(�,�)
�Cf�(x;�)

��i

� Ji(�,�)h001(�,�)
�Cfn(x;�)

��i Cg�(x,t;�,0) � 0 � � � [55]

Cg�(x,t;�,�) � 0 � � 
D [56]� d1(�,�)Cf(x;�) � d2(�,�)Cf�(x;�) � d3(�,�)Cfn(x;�)
[42]

ni (�)
�Cg�(x,t;�,�)

��i

� d0(�,�)Cg�(x,t;�,�) � 0 � � 
N

[57]
Cf�(x,�,0) � Cf�0

(x;�), � � � [43]

Cf�(x;�,�) � Cf�(x;�,�), � � 
D [44]
�2C�0�(x;�,�)

��2
i

� bi(�,t)
�2C�0�(x;�,�)

��i

� c(�,t)C�0�(x;�,�)
ni(�)

�Cf�(x;�,�)
��i

� d0(�,�)Cf�(x;�,�) � d4(�,�)Cf(x;�)

� e(�,�)
�2C�0�(x;�,�)

��
[58]� d4 (�,�)h010(�,�)Cf�(x;�)

� d4(�,�)h001(�,�)Cfn(x;�), � � 
N [45]

�2C��(x;�,�)
��2

i

� bi(�,t)
�C��(x;�,�)

��i

� c(�,t)C��(x;�,�)

C�0�
(x;�,0) � C�0

(x;�) � � � [59]

C�0�
(x;�,�) � 0 � � 
D [60]

ni(�)
�C�0�

(x;�.�)

��i

� d0(�,�)C�0�
(x;�,�) � 0,� � 
N [61]

� exp(�,�)
�C��(x;�,�)

��
� Ji(�,�)

�C�f(x;�)
��i

� Ji(�,�)h010(�,�)
�C�(x;�)

��i

� Ji(�,�)h001(�,�)
�C�n(x;�)

��i

�2C��(x;�,�)
��2

i

� bi(�,t)
�C��(x,t;�,�)

��i

� c(�,�)C��(x,t;�,�)

� d1(�,�)C�f(x;�) � d2(�,�)C�(x;�) � d3(�,�)C�n(x;�)
� e(�,�)

�C��(x,t;�,�)
��

[62][46]

C��(x;�,0) � C��0
(x;�), � � � [47]

C��(x;�,�) � C��(x;�,�), � � 
D [48]
C��(x,t;�,0) � 0 � � � [63]

C��(x,t;�,�)
ni(�)

�C��(x;�,�)
��i

� d0(�,�)C��(x;�,�) � d4(�,�)C�f(x;�) � C�(x,t;�,�), � � 
D [64]

� d4 (�,�)h010(�,�)C�(x;�)
ni(�)

�C��(x,t;�,�)
��i

� d0(�,�)C��(�,t;�,�) � 0, � � 
N
� d4(�,�)h001(�,�)C�n(x;�), � � 
N [49] [65]

�2CQ�(x,t;�,�)
��2

i

� bi(�,t)
�2CQ�(x,t;�,�)

��i

�2Cn�(x;�,�)
��2

i

� bi(�,�)
�Cn�(x;�,�)

��i

� c(�,t)Cn�(x;�,�)

� e(�,�)
�Cn�(x;�,�)

��
� Ji(�,�)

�Cnf(x;�)
��i

� c(�,�)CQ�(x,t;�,�) � e(�,�)
�2CQ�(x,t;�,�)

��
[66]
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derived similarly (see Appendix B). It is worthwhile toCQ�(x,t;�,0) � 0 � � � [67]

CQ�(x,t;�,�) � 0 � � 
D [68] note, on the basis of Eq. [38], [42], and [74] and [75],
and other related equations, that the variabilities of
�(x,t) and Y(x,t) are some complicated functions of
those in the input variables f, �, n, �0, �, g, and Q. Itni(�)

�CQ�(x,t;�,�)
��i

� d0(�,�)CQ�(x,t;�,�)
is also of interest to mention that although the mean
equation in Eq. [28] is nonlinear, the equations govern-

�
�1

Km(�,�)
CQ(x,t;�,�), � � 
N [69] ing the second moments are linear and can be solved se-

quentially.
We now show how to derive the first two moments of The moment equations derived in this section cannot,
flux. The flux in Eq. [2] can be rewritten as in general, be solved analytically, and they are therefore

solved numerically in this study. The zeroth-order mean
qi(x,t) � �Km(x,t)




1 � Y (1) � Y (2) � 1/2 [Y (1)]2� . . .



 flow equation in Eq. [28] through [31] is nonlinear and

thus needs to be solved in an iterative manner. The
coefficients defined in Eq. [32] are updated at each




�

�xi
��

∞

j�0

�(j)� � �il




[70]
iteration. Once the mean pressure head �(0) is solved,
the linear equations for the cross-covariances Cf� C��,Collecting terms at separate order, we have
Cn�, C�0�, C��, Cg�, and CQ� are solved, and finally the

q(0)
i (x,t) � �Km(x,t)Ji(x,t) [71] pressure head covariance Ch can be solved. The numeri-

cal implementation is facilitated by recognizing that all
q(1)

i (x,t) � �Km(x,t)



Ji(x,t)Y (1)(x,t) �

��(1)(x,t)
�xi





[72] second moment equations have the same format except
for driving forces. Detailed discussions about the nu-
merical implementation of similar equations are givenIt can be shown that the mean flux is �q� � q(0) �
by Zhang (1998, 1999) and Zhang and Winter (1998).(q(0)

1 , ···, q(0)
d )T to zeroth or first order in �, and the flux

The Dirac delta function �(x) in the moment equationsfluctuation is q� � q(1) � (q(1)
1 , ···, q(1)

d )T to first order.
is approximated numerically (Zhang and Lu, 2002).Therefore, to first order, the flux covariances are

The mean flux and flux covariances can be computedgiven as
using Eq. [71] and [73], which can be used to study

Cqiqj
(x,t;�,�) � Km(x,t)Km(�,�)�Ji(x,t)Jj(�,�)CY(x,t;�,�) solute spreading in unsaturated–saturated flow (Lu and

Zhang, 2001, unpublished data).
� Ji(x,t)

�CY�(x,t;�,�)
��j ILLUSTRATIVE EXAMPLES

In this section, we attempt to demonstrate the applica-� Jj(�,�)
�CY�(�,�;x,t)

�xi

�
�2C�(x,t;�,�)

�xi��j
� [73]

bility of the developed stochastic model to unsaturated
flow in hypothetical soils. Although the general momentwhere the covariance functions CY and CY� can be de-
equations derived in the previous section are applicablerived by multiplying Y(1)(�,�) and �(1)(�,�) to [25], re-
to any admissible stationary or nonstationary covari-spectively, and taking the ensemble mean
ances with statistical anisotropy, in the examples we

CY(x,t;�,�) � Cf(x;�) � h100(x,t)h100(�,�)C�(x,t;�,�) assume the log saturated hydraulic conductivity f(x),
the log pore-size distribution parameter �(x), and the

� h010(x,t)h010(�,�)C�(x;�) � h001(x,t)h001(�,�)Cn(x;�)
fitting parameter n(x) to be second-order stationary

� h010(�,�)Cf�(x;�) � h010(x,t)Cf�(�;x) with an exponential covariance function

� h001(�,�)Cfn(x;�) � h001(x,t)Cfn(�;x) Cp(h) � �2
pexp(�|h|/�p) [76]

where p � f, �, or n; �2
p is the variance of p; �p is the� h010(x,t)h001(�,�)C�n(x;�) � h010(�,�)h001(x,t)C�n

correlation scale of p; and h is the separation vector.
(�;x) It is straightforward to extend the numerical moment

equation approach to handle statistical nonstationarity� h100(�,�)Cf�(x;�,�) � h100(x,t)Cf�(�;x,t)
and anisotropy. For simplicity, f, �, and n are further

� h100(x,t)h010(�,�)C��(�;x,t) � h100(�,�)h010(x,t)C�� assumed to be uncorrelated in the examples.
(x;�,�)

Infiltration in Unsaturated Media
� h100(x,t)h001(�,�)Cn�(�;x,t) � h100(�,�)h001(x,t)Cn�

In this example, denoted as Case 1, we first try to
(x;�,�) [74] show the validity of our mathematical derivation and

numerical implementation by comparing our results
CY�(x,t;�,�) � Cf�(x;�,�) � h010(x,t)C��(x;�,�) with Monte Carlo simulations. We consider a square

domain of 3 by 3 m in a vertical cross section, discretized� h001(x,t)Cn�(x;�,�) � h100(x,t) C�(x,t;�,�)
into 30 � 60 rectangular elements of 0.1 by 0.05 m. The[75] boundary conditions are specified as follows: a pre-
scribed deterministic constant pressure head � � 0 (wa-The moments of the effective water content can be
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ter table) at the bottom (x1 � 0.0), a constant determinis-
tic flux Q � �Q� at the top (x1 � 3 m), and no-flow
boundary at the left and right sides. The input parame-
ters are given as �f � � 0.0 (i.e., the geometric mean
saturated hydraulic conductivity KG � 1.0 m d�1 ), the
coefficient of variation CVKS � �KS/�KS� � 10.0%, ��� �
�ln(�)� � 0.6931, CV� � ��/��� � 10%, �n� � 1.4, CVn �
�n/�n� � 5%, �f � �� � �n � 0.5 m, �S � 0.4, �r � 0.01,
�Q� � �0.005 m d�1, and �2

Q � 0.0. For a lognormally
distributed variable p, the coefficient of variation of p
is related to the variance of its log-transformed variable
through the simple relation: �lnp

2. This example with
relatively small variabilities in f, �, and n is chosen to
ensure convergence of Monte Carlo simulations.

For Monte Carlo simulations, we generate 30 000
unconditional realizations with zero mean and unit vari-
ance, using a sequential Gaussian random field genera-
tor sgsim from GSLIB (Deutsch and Journel, 1998).
The quality of random fields is then checked by compar-
ing the sample covariance against the input, analytical
covariance of Eq. [76]. For each simulation, a log hy-
draulic conductivity f(x) field, a log-transformed pore-
size distribution �(x) field, and an n(x) field are read
from these unconditional realizations and then are
scaled to the specified mean and variance of f, �, and
n. The unsaturated flow Eq. [1] through [5] are solved
for each set of f(x), �(x), and n(x) realizations, using
Finite-Element Heat- and Mass-Transfer code (FEHM) Fig. 1. Comparisons between moment equation–based approach

(ME) and Monte Carlo simulations (MC) for Case 1: CVKS
� 10%,developed by Zyvoloski et al. (1997). A total of 10 000

CV� � 10%, CVn � 5%, CVQ � 0, and �Q� � �0.005 m d�1. (a)simulations are conducted, on the basis of which sample
Mean pressure head; and (b) head variance.mean and variance of flow quantities are calculated.

The comparison between results from the moment
tions are enough for the mean pressure head. It is alsoequation–based approach (ME) and Monte Carlo re-
indicated from Fig. 2a that there is still a slight differ-sults (MC) is illustrated in Fig. 1, which shows two verti-
ence between the mean pressure head computed fromcal profiles passing through the center of the flow do-
the moment approach and Monte Carlo simulationsmain. It is seen that the mean pressure head derived
(NMC � 10 000), which again is due to numerical errorsfrom our model is almost identical to Monte Carlo re-
and due to neglecting of higher-order terms in our mo-sults (Fig. 1a), while there is still slight discrepancy in
ment solution. Unlike Case 1, because of a relativelythe pressure head variance (Fig. 1b). In addition, Fig.
large infiltration rate in Case 2, flow in the upper portion1 demonstrates that when the variabilities on f, �, and
of the domain is mean gravity-dominated with a con-n are relatively small and the infiltration rate is low, the
stant mean pressure head. For the pressure head vari-number of Monte Carlo simulations needed to obtain
ance (Fig. 2b), it is seen that about 8000 Monte Carloa convergent solution is low. For mean pressure head,
simulations are needed to achieve statistical conver-2000 Monte Carlo simulations are enough to obtain a
gence. In addition, the head variance experiences aconvergent solution, while about 5000 simulations are
quick increase in the capillary fringe, more or less stabi-needed for the pressure head variance. Monte Carlo
lizes in the gravity-dominated region, and increasessimulations beyond 5000 do not significantly affect the
again near the upper flux boundary. The increase ofresults. The discrepancy between pressure head vari-
pressure head variance near the upper flux boundaryances computed from the moment-based approach and
has been observed and explained previously (e.g., Zhangfrom the Monte Carlo simulations (NMC �10 000) is
and Lu, 2002).due to numerical errors in solving flow equations and

We also compared the mean of the log unsaturateddue to neglecting higher-order terms in our moment-
hydraulic conductivity and its variance computed frombased approach. Nevertheless, the discrepancy is small,
the moment approach and Monte Carlo simulationsindicating the validation of the moment-based approach
(Fig. 3). The figure shows that there is an excellentat least in the limit of relatively small variabilities on
agreement between the Monte Carlo results and thesoil properties.
moment-based results. It is worthwhile to note that theIn our second example (Case 2), we increase the infil-
profile of the variance of the log unsaturated hydraulictration rate from �Q� � �0.005 m d�1 to �Q� � �0.05
conductivity �2

Y exhibits a quick increase right above them d�1. The comparisons between Monte Carlo results
water table, as shown in both ME and MC results. It isand moment-based results are illustrated in Fig. 2.

Again, Fig. 2a shows that 2000 Monte Carlo simula- found that this increase is due to a large gradient of �Y�
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Fig. 2. Comparisons between moment equation–based approach
(ME) and Monte Carlo simulations (MC) for Case 2: CVKS

� 10%,
CV� � 10%, CVn � 5%, CVQ � 0, �Q� � �0.05 m d�1. (a) Mean Fig. 3. Comparisons between moment equation–based approach
pressure head; and (b) head variance. (ME) and Monte Carlo simulations (MC) for the log unsaturated

hydraulic conductivity Y in Case 2. (a) Mean �Y�; and (b) vari-
ance �2

Y.with respect to �n�, that is, a large value of ��Y�/��n�.
The comparison of the effective water contents obtained

cult to establish the upper limits of variabilities in soilfrom Monte Carlo simulations and the moment equa-
properties above which the first-order stochastic modeltion–based approach is illustrated in Fig. 4.
starts to break down because this effort would involveWe next consider a case (Case 3) that has relatively
large sets of high-resolution Monte Carlo simulationslarge spatial variabilities on KS and �: CVKS � 100%,
with large variabilities on input variables. This is outsideCV� � 20%. The infiltration rate is �Q� � �0.005 m
of the scope of the present study.d�1. The mean and correlation lengths for other parame-

ters are the same as before. The results are depicted
Contributions of Parameter Variancesin Fig. 5. The figure indicates that, even though the

to Head Variancevariabilities on KS and � are large, 2000 Monte Carlo
simulations are enough for both mean pressure head We also conducted numerical simulations to investi-
and head variance, partially due to the relatively small gate the relative contribution of the variability of f, �,
infiltration rate and partially due to the small variability n, and Q to the pressure head variance. In each simula-
on n. tion, we only allow variation in one of these four param-

In the next example, the infiltration rate in Case 3 is eters with a coefficient of variation CVp � 10.0%, where
increased to �Q� � �0.05 m d�1 (Case 4). We ran 3000 p � KS, �, n, or Q, given �f � � 0.0, ��� � 0.6931, �n� �
Monte Carlo simulations for this case, a few of which did 1.4, and �Q� � �0.05 m d�1. We then run one simulation
not converge and have been removed from computing with the coefficient of variation CV� 10% for all four
sample statistics. The results are illustrated in Fig. 6. It parameters. The results are illustrated in Fig. 7. It is
is well known that flow in an unsaturated system poses seen that under the condition of mutually independent
an interesting numerical problem. Spatial variabilities KS, �, n, and Q, the contribution of the variability in
in KS, �, and n make it even more challenging. As a each parameter to the pressure head variance is additive;
result, convergence may not be achieved for some of namely, the pressure head variance due to the variabilit-
the realizations, especially in the case of large variabilit- ies of all four parameters equals the sum of the four
ies and a large infiltration rate. To efficiently simulate pressure head variances due to the variability of each
unsaturated or unsaturated–saturated flow in the pres- individual parameter. In addition, it seems that the vari-
ence of large material contrasts calls for robust numeri- ability in the fitting parameter n has the largest contribu-

tion to the pressure head variance, compared with othercal solvers. Without such a solver it would be very diffi-
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Fig. 5. Comparisons between moment equation–based approach
(ME) and Monte Carlo simulations (MC) for Case 3: CVKS

�
Fig. 4. Comparisons between moment equation–based approach 100%, CV� � 20%, CVn � 5%, CVQ � 0, �Q� � �0.005 m d�1.

(ME) and Monte Carlo simulations (MC) for the effective water (a) Mean pressure head; and (b) head variance.
content �e in Case 2. (a) Mean ��e�; and (b) variance �2

�e.

rameters (such as the mean infiltration rate) are fixed,
parameters with the same magnitude of coefficients of changing the variance of the infiltration rate alone does
variation. The parameter � is of secondary importance not affect the first-order mean flow field, we are only
in the pressure head variance, and variation in Q is of concerned with the pressure head variance. Figure 9
least importance. Of course, in reality, variabilities of shows the changes of the pressure head variance over
KS and � may be much larger than that of n. For this time, where the solid line represents the initial steady-
reason, we ran more simulations with relatively high state head variance without any uncertainty in Q, and
variabilities in KS, �, and Q: CVKS � 50%, CV� � 30%, the solid line with circles stands for the steady-state
and CVQ � 100%, while keeping CVn � 10%. The head profile of the head variance with the variability CVQ �
variances for these simulations are depicted in Fig. 8. 200%. It is seen from Fig. 9 that the effect of variability
The figure shows that under these specific conditions in Q on the head variance propagates downward from
the contribution to the pressure head variance due to the (top) flux boundary over time. At the earliest time,
the variability CVn � 10% is compatible to that due to the pressure head variance increases only in the vicinity
the variability CVKS � 50% or that due to CV� � 30%. of the flux boundary; with more time, it migrates down-
These results indicate that variability of n has the great ward. After sweeping the whole domain, it approaches a
impact on predictive uncertainty and should not be ig- new steady state, which is different from the initial state.
nored in simulations.

Infiltration in Unsaturated–Saturated Media
Uncertain Boundary Flux In this example, we consider a rectangle grid of 20 �

60 square elements in a vertical cross section having aIn this example, the effect of uncertainty in the infil-
tration rate Q on the mean flow field and the head width L2 � 1.2 m and a height L1 � 3.6 m. The boundary

conditions are specified as follows: no-flow at the bot-variance is investigated. Boundary configuration and
soil properties for this case are the same as those in tom, a constant deterministic flux Q � �Q� at the top,

constant total heads H at the lower part of the left andCase 2, except for the uncertainty in the infiltration rate
Q. Based on the steady-state solution from Case 2, we right sides (H � 0.60 and 0.54 m, respectively), and no-

flow at the upper part of the left and right sides. Theran a transient simulation with an uncertainty in the
infiltration rate CVQ � 200% from time t � 0 and ob- total head at the low part of the left boundary is higher

than that at the right boundary, which produces a meanserved the propagation of the head variance from the
top boundary with time. Because, when the other pa- flow from left to the right in the saturated region. The
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Fig. 8. Contributions to head variance due to variabilities on individ-
ual parameters, CVKS

� 50%, CV� � 30%, CVn � 10%, or
CVQ � 100%.

Because the infiltration rate is compatible with the hori-
zontal flow component (�0.05 m/T) in the saturated
zone, the flow in the unsaturated zone directly passes
through the water table and mixes with flow in the
saturated zone (Fig. 10a). In the saturated zone, the
pressure head variance is zero at the left constant head
boundary and increases in the downstream direction
(Fig. 10b). After reaching its local maximum near the
center of the saturated zone it decreases toward zero
at the right constant head boundary. Away from theFig. 6. Comparisons between moment equation–based approach

(ME) and Monte Carlo simulations (MC) for Case 3: CVKS
� water table, the head variance in the unsaturated zone

100%, CV� � 20%, CVn � 5%, CVQ � 0, �Q� � �0.05 m d�1. (a) increases quickly. But once in the mean gravity-domi-
Mean pressure head; and (b) head variance.

nated area (where the mean pressure head is constant),
it remains unchanged until at the top flux boundary,input parameters are given as �f � � 0.0 (i.e., the geomet-
where the variance reaches the maximum due to theric mean saturated hydraulic conductivity KG � 1.0 m/
boundary effect. Compared with that in the unsaturatedT, where T is any time unit, as long as it is consistent
zone, the head variance in the saturated zone is small,with the time unit in Q) ��� � 0.693 (i.e., the geometric
partially due to the fact that only the variability of themean �G � 2.0 m�1 ), �2

� � 0.08618, �n� � 1.4, �2
n �

0.0196, �f � �� � �n � 0.5 m, �S � 0.4, �r � 0.01, �Q� � log hydraulic conductivity is in effect there, and partially
�0.05 m/T, and �2

Q � 0.0. In terms of coefficients of due to the constant head boundaries in both the up-
variation, the variabilities of KS, �, and n are CVKS � stream and downstream directions. It is seen that the
50.0%, CV� � 30.0%, and CVn � 10.0%, respectively. flow moments are strongly location dependent and thus

Figure 10 depicts the first two moments of pressure spatially nonstationary in an unsaturated–saturated sys-
head at steady state, obtained from the moment-based tem. This flow nonstationarity could not be accurately
stochastic model. The dashed lines in Fig. 10a are equip- accounted for without considering the integrated flow
otential lines (of total head), the solid line is the water system.
table, and the solid lines with arrows are streamlines.

Fig. 9. Propagation of head variance from top to bottom due to vari-Fig. 7. Contributions to head variance due to variabilities on individ-
ual parameters, CVp � 10%, where p � KS, �, n, or Q. ability of infiltration rate CVQ � 200%.
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Fig. 10. Mean pressure head and head variance computed using moment approach for an integrated saturated–unsaturated system. (a) Mean
flow field; and (b) head variance.

SUMMARY AND DISCUSSION model was used. In the stochastic model, the spatial
variabilities of saturated hydraulic conductivity KS,With the method of moment equations we developed
pore-size distribution parameter �, and fitting parame-a general first-order, nonstationary stochastic model for
ter n were all accounted for. We investigated the relativetransient, variably saturated flow in randomly heteroge-
contributions of the soil variabilities as well as the vari-neous media on the basis of the van Genuchten–Mualem
ability in recharge Q to the pressure head variance. Itconstitutive relationship. Due to its nonstationarity and
is seen that the pressure head variance is sensitive tononlinearity, the model cannot generally be solved ana-
these variabilities, in the order of n, �, KS, and Q. Forlytically. We solve it by the numerical technique of finite
one particular case, the variability of CVKS � 50%,differences, which renders flexibility in handling differ-
CV� � 30%, or CVn � 10%, has almost the same contri-ent boundary conditions, medium multiscale, nonsta-
bution to the pressure head variance. This indicates thattionary features, and input covariance structures. The
although the variabilities of � and n are usually smallernonstationary stochastic model developed is applicable
than that of KS, their effects on predicting uncertaintyto the entire domain of bounded, multidimensional va-
associated flow and transport in heterogeneous, unsatu-dose zones or integrated unsaturated–saturated systems
rated media should not be neglected.in the presence of random or deterministic recharge and

The validity of the developed model was confirmedsink–source and in the presence of multiscale, nonsta-
with high-resolution Monte Carlo simulations in thetionary medium features. The results of the stochastic
case of small variabilities (CVKS � CV� � 10% andmodel are the first two moments (means and covari-
CVn � 5%) and relatively large ones (CVKS � 100%,ances) of the flow quantities, such as pressure head and
CV� � 20%, and CVn � 5%). To establish the upperflux. The first moments estimate (or predict) the fields
limits of the variabilities in soil properties below whichof pressure head and flux in a heterogeneous medium,
the first-order stochastic model is valid, however, wouldand the corresponding (co)variances evaluate the uncer-
involve a large amount of high-resolution Monte Carlotainty (error) associated with the estimation (predic-
simulation sets and would require robust numericaltion). These first two moments can be used to construct
solvers that handle large properties contrasts efficiently.confidence intervals for the pressure and flux fields.
This is outside of the scope of the present study.Unlike most existing stochastic flow models that are

For variably saturated flows, the flow quantities arebased on the Gardner–Russo constitutive relationship,
in this study, the more realistic van Genuchten–Mualem generally spatially nonstationary (location-dependent)
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either owing to nonstationary medium features (includ- �S
�n

� �
1

n(n � 1)
SlnSing distinct layers, zones or facies) or complex flow

configurations (including fluid sink–source, the pres-
ence of the water table, or the finite boundaries). Be- �

m
n

S(1 � S1/m)ln(S�1/m � 1) [A8]
cause spatial stationarity (statistical homogeneity) is a
necessary condition for ergodicity (e.g., Zhang, 2002), By writing Y(x,t) � Y(0) � Y(1) �..., we have from Eq. [A1]
these flow quantities are generally nonergodic. There-
fore, one may not equate ensemble with space averages. Y(0)(x,t) � �f (x)�� 1

2
ln S0 � 2 ln{1 � [1 � S1/m00 ]m0}

Instead, the ensemble moments provide prediction (or
[A9]estimation) of the expected behavior of a flow quantity

(by its mean) and the associated prediction uncertainty Y(1)(x,t) � f �(x) � h100(x,t)�(1)(x,t)
(or estimation error) (by its standard deviation). Then,

� h010(x,t)��(x) � h001(x,t)n�(x) [A10]one may compare single realization reality with the con-
Similarly, we may expand CS(x,t) in Eq. [11] by Tay-fidence intervals approximated with the first two mo-
lor seriesments of the flow quantity.
CS(x,t) � SSH [�(0)(x,t)] � exp[��(x)�][�n(x)� � 1]
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�C
�S

� �(�S � �r)S1/m�1(1 � S1/m)m�1[n � (2n � 1)S1/m]APPENDIX A

It is seen from Eq. [8] and [10] that Y(x,t) is a function of [A12]
the random fields f, �, n, and �. As shown in the text, we
decompose them as follows: f(x) � �f(x)� � f�(x), �(x) � �C

��
�

�C
�S�S

�S
��

[A13]
��(x)� � ��(x), n(x) � �n(x)� � n�(x), and �(x,t) � �(0)(x,t) �
�(1)(x,t) � ···. Expand Y(x,t) by Taylor series around �f �, ���,
�n�, and �(0), �C

��
�

�C
�S

�S
��

� C(x,t) [A14]

Y(x,t) � �f(x)� �
1
2

ln S(0)(x,t) � 2 ln{1 � S1/m00 ]m0}

�f �(x) � h100(x,t)�(1)(x,t) �C
�n

�
�C
�S ��S

�n� �
C(x,t)

(n � 1)2

� h010(x,t)��(x)� h001(x,t)n�(x) � ··· [A1]



n � 1 � m2 ln(1 � S1/m) �

(m � 1)S1/m � 1
1 � S1/m

lnS




where S0 � S(0) (x,t) � {1 � [�exp(��(x)�)�(0)(x,t)]�n�}�m0, m0 �
1 � 1/�n(x)�, and hijk � �i�j�kY(x,t)/��i��j�nk evaluated at ���,

[A15]�n�, S0, and �(0). The terms hijk can be evaluated with the aid of

By writing CS(x,t) � C(0)
S � C(1)

S � ..., we have from�Y
��

�
�Y
�S

�S
��

[A2] Eq. [A11]

C(0)
S (x,t) � SSH[�(0)(x,t)] � exp[��(x)�][�n(x)] � 1�

(�S � �r)S1/m
0 [1 � S1/m00 ]m0 [A16]�Y

��
�

�Y
�S

�S
��

[A3]

C(1)
S (x,t) � SS�[�(0)]�(1)(x,t) � p100(x,t)�(1)(x,t)

�Y
�n

�
�Y
�S

�S
�n

� � 2
n2� (1 � S1/m)m

1 � (1 � S1/m)m � p010(x,t)��(x) � p001(x,t)n�(x) [A17]

�ln(1 � S1/m) �
S1/m

1 � S1/m �lnS
m �� [A4] APPENDIX B

We may decompose the effective water content �e(x,t) �
and (�s � �r )S(x,t) into the zeroth-order mean and the first-

order fluctuation,�Y
�S

�
1

2S
�

2(S�1/m � 1)m�1

1 � (1 � S1/m)m
[A5]

�(0)
e � (�s � �r)S(0)(x,t)

� (�s � �r){1 � [�exp��(x)��(0)(x,t)]�n�}�m0 [B1]
�S
��

� �
n � 1

�
S(1 � S1/m) [A6]

�(1)
e (x,t) � (�s � �r)[s100(x,t)�(1)(x,t)

� s010(x,t)��(x) � s001(x,t)n�(x)] [B2]�S
��

� �(n � 1)S(1 � S1/m) [A7]
where sijk � �i�j�kS(x,t)/��i��j�nk evaluated at ���, �n�, and �(0).
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